
94

Review Article

CRIPS Vol. 17 No. 4 July-August 2023

Current Research & Information on Pharmaceutical Sciences (CRIPS)
@NIPER, SAS Nagar, India

Xenoestrogens and Metainflammation:
An interplay between Immune System,

Metabolism and Obesity

Facility for Risk Assessment and Intervention Studies,

Dept. of Pharmacology and Toxicology,

National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India, 160062

gbjena@niper.ac.in

Obesity is the greatest threat to mankind in twenty first century. It is accompanied with low grade

chronic inflammation (metainflammation) which persists in all the tissues involved in energy balance.

Obesogens such as xenoestrogens enter into the body and disrupt normal metabolism of cells which are

responsible for fat deposition namely adipocytes. The research findings demonstrated that macrophages

play a crucial role in metabolic tissues during the onset of obesity. When an intricate balance between

metabolism and innate immunity is disturbed, macrophages surrounding adipocytes get activated and

converted into pro-inflammatory subtypes. Pro-inflammatory macrophages secret pro-inflammatory

cytokines such as Interleukin 6, Tumor Necrosis Factor- and C- reactive protein. In the present review,

an attempt has been made to elucidate the molecular mechanisms involved in xenoestrogen-induced

obesity and metainflammation. Further the role of immune system and the involvement of metabolism in

the genesis of metainflammation have also been explored briefly.

Santanu Basak, Archna Panghal and Gopabandhu Jena*

Keywords: Metainflammation, Obesity,

Xenoestrogen, Bisphenol A, Macrophage,

Immunometabolism

Introduction

According to the World Heart Federation (WHF)

report of 2022, approximately 2.3 billion individuals

were suffering due to obesity worldwide.

Interestingly, the number of obese people is higher

as compared to the underweight in almost every

part of the world. As per the currently ongoing trend,

approximately 2.7 billion adults i.e. around 33% of

the total global population are supposed to be obese

by the year 2025.
1
 Along with obesity, the cases of

other metabolic diseases like type 2 diabetes mellitus

and non-alcoholic fatty liver disease (NAFLD) are

also rising significantly.
2,3

 Therefore, scientists are

exploring to find out the intricate relationship among

different metabolic diseases as well as to understand

the pattern of disease initiation and subsequent

complications. In order to decipher this relationship,

the research in the last decades has been oriented

towards the concept of immunometabolism, an

interface between metabolism and immune system.

Apparently, it seems that nutrient- (metabolic

process) and pathogen-sensing (immune system)

systems are working in a mutually exclusive manner

in higher organisms. In lower invertebrates such as

drosophila, these two systems are not only working

intricately but also are located intertwiningly, known

as the fat body.
4
 The close association between

these two consistently working systems gave birth

to a new concept called “metainflammation”, the

term which was first coined by Hotamisligil in year

2006.
5
 In most of obese people, the proliferating

adipocytes initiate a cascade of low grade systemic

inflammation known as metainflammation. If this

persists for a longer period, it can propagate

deleterious effects to the metabolically active organs

such as pancreas, liver and heart.
6,3

It is undeniable that unhealthy dietary practices

and a sedentary lifestyle have been considered as

the predominant contributing factors in continuously

surging obesity cases. Moreover, an emerging body

of scientific literature emphasizes that exposure to

different environmental chemicals act in tandem with

these factors to exacerbate the incidence of obesity

at an alarming degree.
7
 For instance, xenoestrogens,

a group of chemicals which mimic the natural

estrogen synthesized in the body, play a pivotal

role in the development of obesity, other metabolic

diseases and metainflammation.
8,9

 Among the

xenoestrogens, BPA is the most abundant and most

studied chemical in both humans and experimental
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models.
10,11

 Various in-vivo studies have shown that

pre- and post-natal exposure to Bisphenol A (BPA)

increased the body weight of pups and induced

permanent obesity in the adult rodents.
12-14

Therefore, it is clear that these xenoestrogens can

target the early phases of life leading to the lifelong

effects. Being non-biodegradable and highly lipophilic

in nature, the xenoestrogens tend to accumulate in

the adipose tissue and cause inflammation for a

longer period.
15

 In the present article, an attempt

has been made to provide a critical insight regarding

the role of metainflammation in xenoestrogen-

induced obesity. Further, the molecular aspects of

the existing interface between xenoestrogens,

immune system and genesis of metainflammation has

also been explored briefly.

Role of Xenoestrogens in Obesity

Xenoestrogen can cause obesity mainly through

metabolic disruption.
16,17

 The obesogenic actions

of BPA have been extensively studied in the in-vitro

and in-vivo models.
16

 Ultimately, the mechanisms

through which these xenoestrogens exert their

metabolic disruption and obesogenic effect, even

when the level of exposure is below the No Observed

Adverse Effect Level (NOAEL), are being elucidated

by  different scientific  studies. The relationship

between the exposure level of xenoestrogens and

weight gain forms an inverted “U” shape, curve

where the lower exposure level exerts more

deleterious effect than the higher exposure level.
18

Pro-opiomelanocortin (POMC) neurons in the

hypothalamus restrict food intake while Agouti-

Related Peptide (AgRP) and Neuropeptide Y (NPY)

do the reverse effect. The experimental in-vivo

models showed that BPA-exposed mice had POMC

neuron innervations and the AgRP and NPY peptides

activities were abolished.
19,20

 Apart from doing

dysbalance in neuronal control, xenoestrogens can

alter the carbohydrate metabolism by causing insulin

resistance and necrosis of pancreatic -cells.
21

 They

also increase the number as well as the size of

white adipocytes by elevating triglyceride content,

lipoprotein lipase activity and adipogenic transcription

factor expression like CCAAT Enhancer Binding

Protein-ß (C/EBP-ß).
7,22

 Thus, xenoestrogens

perturb the intricate balance between the neuronal

control and metabolism of the body and cause excess

weight gain as well as obesity.
16

Xenoestrogens as a Causative Factor for
Metainflammation

Xenoestrogens are compounds which have an ability

to interfere with the natural hormones which are

accountable for the regulation of various

physiological functions such as development,

behavior, fertility as well as maintaining the

homeostasis in the body.
23

 The matter of concern

is that there are several xenoestrogens which are

lipophilic in nature. As Body Mass Index (BMI)

increases, these lipophilic molecules accumulate in

the adipose tissue. They are non-biodegradable;

therefore their concentration tends to increase with

time and further continuous exposure is a subject

of concern.
24

 Basically, there are two types of

xenoestrogens: natural (phytoestrogens) and

synthetic
23

, however some authors do not consider

natural ones in the list of xenoestrogens.
25,26

 Among

the synthetic xenoestrogens, BPA is the most

abundant in use; whereas isoflavones form the most

important group of phytoestrogens.
27

 Although,

isoflavones exhibit antioxidant, anticancer,

antimicrobial and anti-inflammatory properties, some

of them like soy isoflavones are also reported to

cause obesity and other metabolic disorders.
28,29

Both of them imitate the action of estrogen and

alter the metabolic processes in the body. These

are capable to upregulate different transcription

factors like Peroxisome Proliferator-Activated

Receptor (PPAR), C/EBP and Nuclear Factor Erythroid

2-related Factor 2 (Nrf2), which can ultimately lead

to the induction of obesity and associated

metainflammation.
14

 Table 1 depicts some of the

important xenoestrogens, their sources along with

their role in obesity and metainflammation.

Many of xenoestrogens cause metainflammation in

a similar way like BPA does. BPA significantly

increased the expression of several genes involved

in adipogenesis and lipid accumulation, including C/

EBP, C/EBP, PPAR, Fatty Acid Synthetase (FASN)

and Sterol Regulatory Element Binding Protein1c

(SREBP1c). The up-regulation of these adipogenic

transcription factors and enzymes are reported to

be involved in the development of metainflammation.
30-32

 BPA has an ability to interact with Nuclear

Receptors (NR) including Retinoid X Receptor (RXR),

PPAR, Estrogen Receptors (ER), Thyroid Receptors

(TR) and Glucocorticoid Receptors (GR), as a result

of which it can induce differentiation of adipocytes

and lipid accumulation.
33

 BPA can also activate

classical transduction pathways of ER and ER,

which can further reduce adiponectin secretion and

increase the proliferation of adipocytes.
34

Organochlorines like Dichlorodiphenyltrichloroethane

(DDT) and endosulfan increase the expression of

Aryl Hydrocarbon Receptor (AHR) transcription

factor, which has the potential to elevate the

production of the aromatase, a CYP450 mediated

enzyme.
35,36

 Aromatase, in turn, converts androgen

to estrogen which upregulates the PPAR and c/EBP

transcription factors.
36

 PPAR and ER family has been

reported to correlate the different molecular
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pathways involved in the process of

metainflammation.
5
 Males are more prone to

metainflammation and related metabolic diseases as

compared to age-matched pre-menopausal females.
37

 This type of difference in susceptibility is due to

the presence of estrogen, which plays a protective

role in pre-menopausal females. Further, post-

menopausal females develop more metabolic disorders

than age-matched males.
38

Metainflammation and Immune System: The
Connecting Link

Among the immune cells, macrophages significantly

contribute to the obesity-induced systemic

inflammation. Macrophages have an ability to quickly

sense their microenvironment and change their

metabolic profile as well as express a wide variety

of inflammatory markers.
44

 Under the stressful

conditions, macrophages are polarized into pro-

inflammatory macrophages (M1 subtype), which

mainly secretes pro-inflammatory cytokines. Once

the stress is over, another type of macrophages

(M2 subtype) get activated and play a crucial role

in tissue repairing.
45

 Interestingly, M2 macrophages

utilize fatty acids as the energy source and produce

ATP through -oxidation and oxidative

phosphorylation, which is more time consuming.

Conversely, M1 macrophages quickly undergo aerobic

glycolysis.
46

 Macrophages during metainflammation

reportedly behave like M1 macrophages to a great

extent.
47

 These metabolically activated

macrophages express low levels of CD206

(overexpressed in macrophages of non-obese

animals) and elevated the levels of CD11c, CD36,

Macrophage Scavenger Receptor 1 (MSR1), ATP-

binding cassette A1 (ABCA1), adipose differentiation-

related protein such as Perilipin-2.
48,46,49

 Various

types of immune cells in the adipose tissue can

affect the shift in macrophage polarization. For

instance, neutrophils induce this change by using

protease elastase, T-lymphocytes by using

interferon-, natural killer cells induce polarization

by TNF- and MCP1 and B cells contribute by

producing IgG antibodies.
50,47

 Macrophages

expressing CD11c have been linked to insulin

resistance and are located in the crown-like

structures, which encircle necrotic adipocytes to

eliminate them through a process called exophagy.
46

 This process results in the uptake of FFA and

lipids by macrophages and the formation of foam

cells.
51

 In summary, obesity induces some changes

in the phenotype and behaviour of macrophages

which contribute greatly to the overactivation of

innate immunity system of our body leading to the

initiation of low grade systemic inflammation.

Obesity and Metainflammation: The
Molecular Basis

Lipids are involved in the coordinated regulation of

metabolic, inf lammatory and innate immune

processes. The quest for elucidating the molecular

signaling involved in metainflammation started around

a decade ago when researchers discovered high

levels of Tumor Necrosis Factor- (TNF-) in the

adipose tissue of obese mice. This finding established

a clear connection between obesity and chronic

inflammation in the experimental mice model.
52

 Later,

it was established that TNF- is not released by

adipocytes but rather by the macrophages which

surround them.
53

 TNF- is a marker of local as well

as systemic inflammation, therefore  high chances

of crosstalk existed between adipocytes and immune

system under obese condition.
54,55

 According to

literature, Endoplasmic Reticulum (ER) can serve as

a common target and in fact, it is considered that

ER begins the inflammatory cascade in the

metainflammation process.
5,56

In obesity, the elevated levels of Free Fatty Acid

(FFA) in the adipocytes increase ER stress which

can further activate a number of inter-connected

pathways.
57

 FFA stimulates the unfolded protein

response which is mediated by nutrient fluctuations,

hypoxia and the presence of different toxins. This,

in turn, generates additional molecular targets such

as Activating Transcription Factor 6 (ATF-6),

Inositol-Requiring Enzyme Type 1 (IRE1) and Protein

Kinase R-like Endoplasmic Reticulum Kinase (PERK),

which can further lead to metainflammation.
58,59

 It

has been reported that ATF-6 increases stress to

Golgi body, IRE1 stimulates the lipid droplet formation

and PERK binds with PPAR and C/EBP proteins.
60

These three phenomena can increase the oxidative

stress in the system and activate Jun N-terminal

Kinase (JNK) and IB Kinase Complex (IKK) factors

to cause inflammation and necrosis of adipocytes.
61

Additionally, FFA directly upregulates the expression

of PPAR, C/EBP and Nrf2 as depicted in the figure 1.

All of these mediators alter the expression of IL-6

and TNF- which can further stimulate monocyte

to macrophage activation. The macrophages also

produce IL-6 and TNF- which also help to initiate

the vicious cycle of inflammation.
59

The leakage of calcium (Ca
2+

) ions from the outer

membrane of ER is another phenomenon which takes

place under ER stress. The excess of Ca
2+

 ions are

responsible for the mitochondrial damage and

secretion of cytochrome-c. This further leads to

apoptosis by binding with the Apoptotic Protease

Activating Factor-1 (Apaf-1).
62

 Both ER stress and

mitochondrial damage increase the Reactive Oxygen
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Species (ROS) levels which in turn activate JNK and

IKK. Both JNK and IKK up-regulate the Monocyte

Chemoattractant Protein-1 (MCP-1), IL6 and

TNF- expression but decrease the production of

adiponectin, a cytokine produced exclusively by the

adipocytes.
63

 Reduction in the adiponectin level is

also accomplished by GPR30, a G-protein coupled

receptor involved in the production of anti-

inflammatory cytokines like IL10. Estrogen can have

a rapid non-genomic response via GPR30. The GPR30

knockout mice have reportedly exhibited elevated

levels of pro-inflammatory cytokines and low

adiponectin levels in their circulation.
64

 The reduced

production of adiponectin and increased production

of pro-inflammatory cytokines block the action of

Insulin Receptor Substrate (IRS), resulting in the

insulin resistance in adipocytes. Insulin receptor via

mTORC1-Egr1-ATGL pathway ameliorates the

degradation of triglyceride into FFA which increases

the size of lipid droplet.
65

 Due to large lipid droplets,

ER tends to synthesize more proteins to package

the enlarged lipid droplets and this phenomenon is

responsible for the excessive ER stress.
66

 From the

existing literature, it is clearly evident that the

pathophysiology of metainflammation relies on a

complex intertwined pathways involving the

metabolic and immune system, which start with ER

stress and then progress to other cell-organelles

leading to the production of pro-inflammatory

cytokines. The purinergic system, specifically the

metabolites ATP and adenosine, plays a significant

role in the development of metainflammation.
67

Adenosine exhibits anti-inflammatory properties by

inhibiting Th1-polarizing responses and promoting

the production of anti-inflammatory cytokines and

Th2-polarizing responses. On the other hand, ATP,

particularly at high extracellular concentrations,

contributes to inflammation and cell death.
68,69

 In

metainflammation, there is a decrease in adenosine

levels and a significant increase in ATP levels.
69

Metabolic Considerations in
Metainflammation: Role of Pancreas and Liver

In the context of metainflammation, the pancreas

and liver are primarily affected. In the pancreas,

metainflammation is associated with two main

inflammatory pathways, JNK-AP-1 and IKK-NF-B,

which are connected to IRE-1 and PERK activity

during ER stress.
70

 These pathways involve

interactions between IRE-1 and JNK activation

through TNF receptor-associated factor 2 (TRAF2),

as well as the association of IRE-1 and PERK

activation with the IKK-NF-B pathway. The

activation of IRE-1 and PERK are also associated

with the IKK-NF-B pathway, but through distinct

mechanisms. IRE-1 interacts with IKK-ß through

TRAF2, whereas PERK activation leads to the

degradation of IB, thereby facilitating NF-B

activity.
71,72

 In the liver, metainflammation occurs

due to the entry of excessive amounts of free fatty

acids (FFA) from necrotic adipose tissue, leading to

lipid accumulation in hepatocytes and induce

lipotoxicity.
73,74

 The liver, like adipose tissue, has

resident macrophages called Kupffer cells, and the

interaction between hepatocytes and Kupffer cells

follows a similar pattern as in adipose tissue. As the

liver is crucial for carbohydrate and fat metabolism

and relies on insulin, the excess lipid accumulation

results in insulin resistance and the production of

pro-inflammatory cytokines, disrupting the metabolic

regulation.
75,76

Future perspectives

The purinergic system is a crucial modulator of

metainflammation and its role has been investigated

in the aetiology of osteoarthritis.
67

 The exploration

of the role of purinergic system mediated

metainflammation in metabolic disorders might open

up a new therapeutic avenue for the disease. The

relationship between metabolism and inflammation

via epigenetic regulation of gene expression is

another area which needs more research and may

eventually lead to a potential clinical intervention

strategy. Recent research suggests that lysine

acetylation of both histone and non-histone proteins

cause alterations in energy metabolism during

chronic inflammation.
77

 Therefore, by regulating the

expression of pro- and anti-inflammatory mediators,

deacetylase inhibitors or activators may be further

strategies to prevent macrophage-induced

metainflammation. Despite the significant progress

made over the past few decades, many concerns

regarding the processes of macrophage polarisation

and metainflammation remains unanswered. The

interaction between macrophages and their milieu

is a complicated and dynamic process due to the

heterogeneous and versatile character of

macrophages. At present the understanding of these

interactions in in-vivo conditions are limited. These

issues can be addressed through the incorporation

of new technology, such as computational biological

methods for better understanding and interpretation.
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International Conference cum Workshop on
ARTIFICIAL INTELLIGENCE SOLUTIONS FOR PHARMACEUTICAL

RESEARCH AND KNOWLEDGE

(AI-SPARK 2023)

October 9-11, 2023

Organized by
DEPARTMENT OF PHARMACOINFORMATICS

NIPER, S.A.S. Nagar, Punjab-160062

ABOUT THE CONFERENCE

AI-SPARK 2023 aims to bring together the leading

academicians, industrialists, researchers, and
scholars across the globe to facilitate a better
understanding and integration of the latest artificial
intelligence approaches and propel the development
of new tools and techniques in drug design and

development.

HANDS ON TRAINING

Two days workshop (Oct. 10-11, 2023) will cover

applications of machine leaning and artificial
intelligence using python programming. Due to the
limited availability of computer systems,

participants will be considered on a first-come-

first-served basis.

CONFERENCE TRACKS

 AI in Drug Discovery

 AI in Protein Structure Prediction/Omics

 AI in Pharmacokinetics and Toxicity Predictions

 AI in Drug Delivery and Formulations

 AI in Medical Devices

 AI in Translational Research

 Ethical, legal, and regulatory considerations in

AI-driven  drug discovery

 Poster Session

 Hands on AI/ML training with python

SPONSORED BY
NIPER, S.A.S. Nagar; Department of Biotechnology (DBT), Government of India

IMPORTANT DATES

Conference:  Oct. 9-11, 2023

Workshop: Oct. 10-11, 2023

Last Date Registration: Sept. 15, 2023

Poster Submission: Sept. 15, 2023

REGISTRATION

Category Registration

Fees (INR)

Students/

Research Scholars 2000

Faculty 5000

Industry

Professionals 10000

CONTACT

https://niper.gov.in/aispark

Registration:
https://forms.gle/
597ucPYz7FL6475N9

Email:

aispark.niper@gmail.com,
pi@niper.ac.in
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